
501-EMD-001

EDGRS Database Performance Study

White Paper

October 2003

Prepared Under Contract NAS5-03098

RESPONSIBLE AUTHOR

Siwei Xu /s/ 10/29/03
Siwei Xu, Software Engineer Date
ECS Maintenance and Development Project

RESPONSIBLE OFFICE

Arthur Cohen /s/ 10/29/03
Arthur Cohen, Custom Code Maintenance Date
ECS Maintenance and Development Project

Raytheon Company
Upper Marlboro, Maryland

This page intentionally left blank.

Abstract

Goddard Space Flight Center uses a reporting tool called EDGRS to measure the Ingest rate of
its science products. The reporting tool also queries the Inventory metadata tables for update
events. This later query was identified as a performance issue. This paper identifies the problem
query and suggests an option for improving its performance.

Keywords: EDGRS, SDSRV, performance, database, event, update

 iii 501-EMD-001

This page intentionally left blank.

 iv 501-EMD-001

Contents

Abstract

1. Introduction

1.1 Purpose... 1-1

1.2 Organization... 1-1

2. References

3. Current Performance Issue

3.1 Current Performance issue... 3-1

4. The New Enhancement

4.1 Capturing update event history .. 4-1

4.2 The new EDGRS query ... 4-3

4.3 Maintenance issue.. 4-4

4.4 Prototyping results ... 4-5

 v 501-EMD-001

This page intentionally left blank.

 vi 501-EMD-001

1. Introduction

1.1 Purpose
Provide a recommendation for improving the performance of the EDGRS query.

The EDGRS query is used to identify granules recently updated within SDSRV. In addition to
EDGRS, there are other functions within ECS that query for recent SDSRV granule updates.
The new enhancement described in this paper could improve performance for both EDGRS and
these other ECS functions.

1.2 Organization
This paper is organized as follows: Section 1, Introduction; Section 2, Current Performance
Issue; Section 3, The New Enhancement.

Questions regarding technical information contained within this Paper should be addressed to the
following EMD contacts:

• EMD Contacts

– Siwei Xu, Software Engineer, 301-925-0882, sxu@eos.hitc.com

Questions concerning distribution or control of this document should be addressed to:

Data Management Office
The EMD Project Office
Raytheon Systems Company
1616 McCormick Drive
Upper Marlboro, MD 20774-5301

 1-1 501-EMD-001

This page intentionally left blank.

 1-2 501-EMD-001

2. References

The following ECS documentation apply:

Release 6B Science Data Server Database Design and Schema Specifications for the ECS
Project.

The ECS document numbers are:

311cd62401s1
311cd62401s3a
311cd62401s3b
311cd62401s4
311cd62401sA

 2-1 501-EMD-001

This page intentionally left blank.

 2-2 501-EMD-001

3. Current Performance Issue

3.1 Current Performance Issue
The current mechanism for identifying recent updates to SDSRV granules is to query the
lastUpdate column within the DsMdGranules table. However, this column does not provide any
information on what part of the granule was updated. In addition, queries on the lastUpdate
column typically require a table scan because the column is not indexed. Indexing the column
would be inefficient because it is updated frequently.

Two problems that had to be resolved included: finding an efficient way to identify recent
granule updates and to identify which part of the granule was updated.

Specifically, the EDGRS script contains a query similar to:

SELECT "dbID" = Rtrim(Ltrim(convert(varchar(19) ,dbID))),
 "ShortName" = Rtrim(Ltrim(convert (varchar(9),ShortName))),
 "SizeMBECSDataGranule" = Rtrim(Ltrim(convert(varchar(25),
 convert(numeric(25,7),SizeMBECSDataGranule)))),
 "BeginningDateTime" = Rtrim(Ltrim(convert
 (varchar(26),BeginningDateTime))),
 "EndingDateTime" = Rtrim(Ltrim(convert
 (varchar(26),EndingDateTime))),
 "insertTime" = Rtrim(Ltrim(convert (varchar(26),insertTime))),
 "ProductionDateTime" = Rtrim(Ltrim(convert
 (varchar(26),ProductionDateTime))),
 "lastUpdate" = Rtrim(Ltrim(convert (varchar(26),lastUpdate))),
 "LocalGranuleID" = Rtrim(Ltrim(convert
 (varchar(100),LocalGranuleID))),
 "VersionID" = Rtrim(Ltrim(convert (varchar(5),VersionID))),
 "deleteEffectiveDate" = Rtrim(Ltrim(convert
 (varchar(26),deleteEffectiveDate))),
 "DeleteFromArchive" = Rtrim(Ltrim(convert
 (varchar(5),DeleteFromArchive)))
FROM DsMdGranules
WHERE lastUpdate >= DATEADD(DAY, -15, getdate())

This query selects information about granules that were updated within the past 15 days.

The actual query within the EDGRS script uses the insertTime column to break this query into 2
parts, but the above query captures the nature of the problem without the added complexity.
This analysis is also consistent with the goals identified through conversations with the EDGRS
development team. The primary interest is in “re-versioned” granules and granules marked or
unmarked for deletion.

 3-1 501-EMD-001

This page intentionally left blank.

 3-2 501-EMD-001

4. The New Enhancement

4.1 Capturing update event history
The new design for finding recent granule metadata updates begins with adding two new tables
to the SDSRV database for capturing all the identified update events that can happen to the
granule’s metadata.

The tables are:

DsMdGrEventDomain- which defines the update events.
DsMdGrEventHistory- which records the update event history.

The following are the table definitions:

 create table DsMdGrEventDomain (
 eventId smallint not null,
 eventName varchar(50) not null,
 constraint PK_DSMDGREVENTDOMAIN PRIMARY KEY (eventId)
)

 create table DsMdGrEventHistory (
 dbID ID not null,
 eventTime datetime not null,
 eventId smallint not null,
 constraint FK_DSMDGREVENTHISTORY FOREIGN KEY(eventId)
 REFERENCES dbo.DsMdGrEventDomain(eventId)
)

 create clustered index xDsMdGrEventHistory on
 DsMdGrEventHistory(eventId, eventTime)

Note: The foreign key constraint between the DsMdGranules table and the new
DsMdGrEventHistory table is omitted due to the purpose of preserving the event history when
the actual granule is deleted from the DsMdGranules table. However, the constraint does get
enforced when the rows are inserted in the triggers.

The DsMdGrEventDomain table will be populated immediately after creation with the following
rows:

Note: eventId 1-20 are reserved for update events on DsMdMeasuredParameter.

INSERT DsMdGrEventDomain VALUES (1, "Update DsMdMeasuredParameter QAMUT")
INSERT DsMdGrEventDomain VALUES (2, "Update DsMdMeasuredParameter others")
Note: eventId 21-50 are reserved for update events on DsMdMeasuredParameter

INSERT DsMdGrEventDomain VALUES (21, "Update DsMdGranules VersionID")
INSERT DsMdGrEventDomain VALUES (22, "Update DsMdGranules deleteEffectiveDate")
INSERT DsMdGrEventDomain VALUES (23, "Update DsMdGranules DeleteFromArchive")
INSERT DsMdGrEventDomain VALUES (24, "Update DsMdGranules processingHistoryId")
INSERT DsMdGrEventDomain VALUES (25, "Update DsMdGranules others")

 4-1 501-EMD-001

Note: eventId 51-60 are reserved for update events on DsMdFileStorage

INSERT DsMdGrEventDomain VALUES (51, "Update DsMdFileStorage checkSum")
INSERT DsMdGrEventDomain VALUES (52, "Update DsMdFileStorage fileSize")
INSERT DsMdGrEventDomain VALUES (53, "Update DsMdFileStorage others")

Note: eventId are reserved for each of the following tables

INSERT DsMdGrEventDomain VALUES (61, "Update DsMdAncillaryInput")
INSERT DsMdGrEventDomain VALUES (71, "Update DsMdInputGranule")
INSERT DsMdGrEventDomain VALUES (81, "Update DsMdBrowseGranuleXref")
INSERT DsMdGrEventDomain VALUES (91, "Update DsMdGrSensorCharacteristics")
INSERT DsMdGrEventDomain VALUES (101, "Update DsMdGrStorageMedium")
INSERT DsMdGrEventDomain VALUES (111, "Update DsMdGrVerticalSpatialDomain")
INSERT DsMdGrEventDomain VALUES (121, "Update DsMdGranuleAnalysisXref")
INSERT DsMdGrEventDomain VALUES (131, "Update DsMdGranuleCampaignXref")
INSERT DsMdGrEventDomain VALUES (141, "Update DsMdGranuleLocality")
INSERT DsMdGrEventDomain VALUES (151, "Update DsMdGranuleReview")
INSERT DsMdGrEventDomain VALUES (161, "Update DsMdGranuleVersions")
INSERT DsMdGrEventDomain VALUES (171, "Update DsMdOrbitCalcSpatialDomain")
INSERT DsMdGrEventDomain VALUES (181, "Update DsMdOrbitCalculatedSpatial")
INSERT DsMdGrEventDomain VALUES (191, "Update DsMdQaGranuleXref")
INSERT DsMdGrEventDomain VALUES (201, "Update DsMdXAR")
INSERT DsMdGrEventDomain VALUES (211, "Update DsMdUninterpretedData")
These rows capture all the known metadata update Use Cases as well as many other possible use
cases. The events that don’t have identified use cases were added because the schema currently
contains update triggers on these metadata tables, and it is possible that some DAAC’s may have
their own scripts for updating them. These update triggers currently cause the lastUpdate
column within the DsMdGranules table to be modified.

As a future use, the design allows for additional events to be defined within each logical group
by leaving gaps between the ranges for the logical groups. The range for each table is larger
than the actual number of columns in the table. This allows each column to have it’s own update
eventId. A query can easily identify all updates to a table by specifying the appropriate range of
consecutive eventIds or identify updates to specific columns within a table(s) by specifying a list
of eventIds. The DAACs can insert new rows into the DsMdGrEventDomain table to capture
events not included in the above list. In this case the DAAC will have to supply a mechanism for
inserting the event into the DsMdGrEventHistory table.

For example:

INSERT DsMdGrEventDomain VALUES (6, "Update DsMdGranules DayNightFlag")

When the new event happens in a DUE script, the script needs to insert a row in the
DsMdGrEventHistory table:

INSERT DsMdGrEventHistory VALUES (@dbID, getdate(), 6)

By introducing the two tables and having a composite index on eventId and eventTime the
design provides an equivalent for an index on the DsMdGranules’ lastUpdate column. These
tables support a much more efficient way to determine all the granules that were updated during
a specified time period for a given update event. Events will be stored in the

 4-2 501-EMD-001

DsMdGrEventHistory for a configurable amount of time to allow each DAAC to specify what it
considers a recent update. The DAACs need to be aware that the performance of the system will
be related to the amount of event history maintained. A retention period of 2 weeks is
recommended.

4.2 The new EDGRS query
The EDGRS query that is currently experiencing performance problems can take advantage of
this new design by using the following query:

DECLARE @searchDate datetime
SELECT @searchDate = DATEADD(DAY, -15, getdate())

SELECT "dbID" = convert(varchar(19) ,dbID),
 "ShortName" = convert (varchar(9),ShortName),
 "SizeMBECSDataGranule" = convert(varchar(25),convert(numeric(25,7),
 SizeMBECSDataGranule)),
 "BeginningDateTime" = convert (varchar(26),BeginningDateTime),
 "EndingDateTime" = convert (varchar(26),EndingDateTime),
 "insertTime" = convert (varchar(26),insertTime),
 "ProductionDateTime" = convert (varchar(26),ProductionDateTime),
 "lastUpdate" = convert (varchar(26),lastUpdate),
 "LocalGranuleID" = convert (varchar(100),LocalGranuleID),
 "VersionID" = convert (varchar(5),VersionID),
 "deleteEffectiveDate" = convert (varchar(26),deleteEffectiveDate),
 "DeleteFromArchive" = convert (varchar(5),DeleteFromArchive)
FROM DsMdGranules
WHERE dbID in (select distinct dbID
 From DsMdGrEventHistory
 Where eventId between 21 and 22
 AND eventTime >= @searchDate)

Note: We introduced @searchDate so that dateadd() and getdate() functions only need to be
computed once. We removed all the rtrim() and ltrim() function calls to increase
performance and because they didn't seem to make any difference when we executed the
query.

EDGRS is currently using 15 days as the time range span. It’s our understanding that the query is
essentially run everyday. Having a query that covers 15 days could potentially generate 15 times
the amount of work that would normally be needed. If this is used to guard against occasional
gaps in running the script or script failures, then a different approach that tracks the last
successful run date/time is recommended. One could use this plus some safety margin (which
now can be much, much smaller than 15 days) to compute the time interval that needs to be
covered.

A subtle new feature of this design is the ability to capture granules that are deleted during the
query range. The current system queries the deleteEffectiveDate within the DsMdGranules
table. This method can be inaccurate if the granule is physically deleted prior to running the
EDGRS script. With the new design, by relaxing the integrity constraint between the
DsMdGrEventHistory and the DsMdGranules tables, the records of the delete event are retained
in the DsMdGrEvenHistory table even after the granules are physically deleted. To capture the
dbIDs of the deleted granules, the above query needs to be modified to include an outer join on

 4-3 501-EMD-001

dbIDs so that it will select all the dbIDs from DsMdGrEventHistory table even if they don’t exist
in DsMdGranules table.

The following is the showplan for the new example query:

QUERY PLAN FOR STATEMENT 1 (at line 1).
 STEP 1
 The type of query is SELECT.
 FROM TABLE
 DsMdGrEventHistory b
 Nested iteration.
 Using 2 Matching Index Scans
 Using Clustered Index.
 Index : xDsMdGrEventHistory
 Forward scan.
 Positioning by key.
 Keys are:
 eventId ASC
 eventTime ASC
 Using Clustered Index.
 Index : xDsMdGrEventHistory
 Forward scan.
 Positioning by key.
 Keys are:
 eventId ASC
 eventTime ASC
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

 FROM TABLE
 DsMdGranules a
 Nested iteration.
 Index : PK_DSMDGRANULES
 Forward scan.
 Positioning by key.
 Keys are:
 dbID ASC
 Using I/O Size 2 Kbytes for index leaf pages.
 With LRU Buffer Replacement Strategy for index leaf pages.
 Using I/O Size 2 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.

4.3 Maintenance Issue
The new DsMdGrEventDomain does not require any ongoing maintenance other than entering
new events to capture. The new DsMdGrEventHistory table will need to be cleaned up
periodically. This “clean-up” should be configured to be consistent with the running of the
EDGRS script. The cleanup is configured as a “background” task within the
EcDsScienceDataServer. This means the cleanup can only occur if the EcDsScienceDataServer
is running. The EcDsScienceDataServer configuration file contains the following new
parameters for controlling the cleanup:

 4-4 501-EMD-001

ParameterName Default Value

SDSRV_GREVENTHIST_DATARETENTIONDAYS 14

SDSRV_GREVENTHIST_BATCHDELETESIZE 500

SDSRV_GREVENTHIST_CLEANUPINTERVALSECS 3600

Hints:

Since the DsMdGrEventHistory table can have multiple rows for each granule that's updated, the
system should be configured to remove events on a timely basis. The performance of the system
is directly related to the number of rows in this table.

Since the data in this table changes all the time, we need to run update statistics on this table
frequently.

4.4 Prototyping results
Prototyping a query to simulate the join between the DsMdGrEventHistory table and the
DsMdGranules table was conducted in the PVC.

The following is a summary of the results.

“Num rows matching event" represents the number of rows in the DsMdEventHistory table that
matched the query (and thus were joined to DsMdGranules). As a reference point it takes 240
minutes to table scan the 17 million row DsMdGranules table.

Num rows Num rows Num rows
DsMdGranules DsMdEventHistory matching event time(minutes)

17 million 1 million 400,000 24
17 million 1 million 1 million 61
17 million 2 million 100,000 6
17 million 2 million 200,000 12
17 million 2 million 400,000 23
17 million 2 million 2 million 110

The new design appears 10 times faster than the table scan when processing 400,000 events. As
expected, the performance degrades as the number of matching events increases (looks to be
linear). It's still 1/2 the table scan time with 2 million matching events. Note that the
performance tends to remain stable as the number of events stored is increased (400,000 matches
takes 24 minutes with 1 or 2 million total events).

In addition, the “cleanup” of events from the DsMdGrEventHistory table was also prototyped.

It took roughly 2 minutes to clean 200,000 rows out of 4 million rows in DsMdGrEventHistory
table. Therefore it has very little impact on the update activities on this table.

 4-5 501-EMD-001

 4-6 501-EMD-001

This page intentionally left blank.

	Abstract
	Contents
	1. Introduction
	1.1Purpose
	1.2Organization

	2. References
	3. Current Performance Issue
	3.1Current Performance Issue

	4. The New Enhancement
	4.1Capturing update event history
	4.2The new EDGRS query
	4.3Maintenance Issue
	4.4Prototyping results

